Evice Blockchain: Arsitektur Blockchain
Hibrida Layer 1 & 2 yang Skalabel,
Aman, dan Siap Masa Depan

Syafiq Nabil Assirhindi
20 Oktober 2025

Ringkasan

Evice Blockchain adalah platform blockchain Layer 1 (L1) berkinerja
tinggi yang dirancang untuk mengatasi trilema blockchain—skalabilitas,
keamanan, dan desentralisasi. Dengan mengintegrasikan solusi penskala-
an Layer 2 (L2) Zero-Knowledge Rollup (ZK-Rollup) secara native, Evi-
ce menawarkan throughput transaksi yang masif dengan tetap mewarisi
keamanan dari lapisan dasarnya. Arsitektur ini didukung oleh proto-
kol konsensus Proof-of-Stake (PoS) hibrida inovatif bernama Aegis, yang
menggabungkan konfirmasi transaksi cepat melalui lapisan Velocity de-
ngan finalitas absolut yang dijamin oleh lapisan Gravity. Platform ini
mendukung smart contract melalui runtime WebAssembly (WASM) yang
aman dan efisien [16], serta mengadopsi skema kriptografi canggih, ter-
masuk tanda tangan post-quantum Dilithium [8] untuk ketahanan jangka
panjang. Whitepaper ini menguraikan arsitektur teknis, mekanisme kon-
sensus, solusi L.2, dan komponen ekosistem yang menjadikan Evice sebagai
fondasi yang kuat untuk aplikasi terdesentralisasi generasi berikutnya.

1 Pendahuluan

Dalam beberapa tahun terakhir, teknologi blockchain telah menunjukkan po-
tensi revolusioner di berbagai industri. Namun, adopsi massal masih terhambat
oleh tantangan fundamental yang dikenal sebagai trilema blockchain: sulitnya
mencapai skalabilitas tinggi, keamanan yang kuat, dan desentralisasi penuh
secara bersamaan. Banyak platform yang ada mengorbankan salah satu as-
pek untuk mengoptimalkan yang lain, yang membatasi kasus penggunaannya.
Akibatnya, pengguna mengalami biaya tinggi, waktu tunggu lama, dan risiko
keamanan.

Evice Blockchain dirancang dari awal untuk mengatasi tantangan ini secara
holistik. Visi kami adalah menciptakan platform yang tidak hanya cepat dan
murah untuk pengguna akhir, tetapi juga sangat aman, terdesentralisasi, dan
siap menghadapi tantangan komputasi masa depan, termasuk ancaman dari
komputasi kuantum.



Untuk mencapai ini, Evice mengimplementasikan arsitektur hibrida:

e Layer 1 (Lapisan Dasar): Berfungsi sebagai lapisan penyelesaian (sett-
lement layer) dan sumber kebenaran (source of truth). Lapisan ini ber-
tanggung jawab atas keamanan jaringan melalui konsensus PoS, finalitas
transaksi, dan eksekusi smart contract penting.

e Layer 2 (Lapisan Penskalaan): Beroperasi sebagai ZK-Rollup yang
mengeksekusi ribuan transaksi di luar rantai (off-chain), menghasilkan
bukti kriptografis (ZK-SNARK) atas validitasnya, dan mengirimkan bukti
tersebut ke Layer 1. Hal ini secara dramatis meningkatkan throughput dan
mengurangi biaya transaksi.

Whitepaper ini akan mengupas tuntas setiap komponen teknis yang membangun
Evice Blockchain, mulai dari arsitektur dasarnya hingga detail implementasi
protokol konsensus dan solusi Layer 2.

2 Arsitektur Keseluruhan

Arsitektur Evice dirancang secara modular, memisahkan lapisan eksekusi da-
ri lapisan konsensus dan penyelesaian. Alur interaksi antar komponen utama
digambarkan di bawah ini, diikuti oleh penjelasan rinci untuk setiap peran.

e Pengguna (User): Aktor eksternal yang berinteraksi dengan jaringan.
Pengguna mengirimkan transaksi L1 ke endpoint RPC gRPC milik Node
L1, atau mengirimkan transaksi L2 ke endpoint JSON-RPC milik Node
L2 (Sequencer).

e Node L1 (Validator): Partisipan jaringan yang menjalankan perangkat
lunak evice_blockchain. Mereka bertanggung jawab untuk memvalidasi
transaksi, berpartisipasi dalam konsensus Aegis, mengusulkan blok baru,
dan menjaga integritas state L1. Node ini juga memvalidasi dan mengek-
sekusi transaksi L2 Rollup yang dikirim oleh Sequencer.

e Node L2 (Sequencer): Entitas khusus yang dipilih di L1 melalui me-
kanisme Stake- Weighted VRF. Sequencer menjalankan binary sequencer
yang mengekspos API JSON-RPC untuk menerima transaksi L2. Tugas-
nya adalah mengurutkan transaksi (berdasarkan priority fee), membuat
batch, memanggil Prover, mengumpulkan tanda tangan dari DAC, dan
akhirnya membungkus semua data ini ke dalam sebuah transaksi L1 jenis
SubmitRollupBatch.

e Prover & Aggregator: Prover adalah komponen yang mengambil ba-
tch transaksi dan menghasilkan bukti kriptografis ZK-SNARK yang mem-
buktikan validitas transisi state L2. Aggregator kemudian dapat mengga-
bungkan beberapa bukti dari batch yang berurutan menjadi satu bukti
agregat, yang secara signifikan mengurangi biaya verifikasi di L1.



e Data Availability Committee (DAC): Sekelompok entitas teperca-
ya yang bertanggung jawab untuk menerima data batch dari Sequencer
dan menandatanganinya. Kumpulan tanda tangan dari DAC disertakan
dalam transaksi SubmitRollupBatch ke L1 sebagai jaminan bahwa data
transaksi L2 tersedia dan dapat dipulihkan jika Sequencer menjadi tidak
responsif.

Interaksi antara L1 dan L2 difasilitasi oleh dua mekanisme utama. Pertama, me-
lalui transaksi SubmitRollupBatch atau SubmitAggregateRollupBatch yang
membawa pembaruan state L2 ke L1. Kedua, melalui smart contract bridge di
L1, yang mengelola deposit aset ke L2 dan memproses penarikan dari L2 dengan
memverifikasi WithdrawalProof (bukti Merkle inklusi) terhadap state root L2
yang telah dicatat di L1.

3 Layer 1: Evice Blockchain Core

Lapisan dasar Evice adalah fondasi keamanan dan desentralisasi seluruh ekosis-
tem.

3.1 State Machine

Manajemen state di Evice tidak hanya menggunakan konsep Merkle Patri-
cia Trie [18], tetapi secara spesifik diimplementasikan menggunakan pustaka
trie-db dengan layout kustom EviceTrieLayout. Layout ini mendefinisik-
an Keccak-256 [7] sebagai fungsi hashing untuk node trie dan menggunakan
ProductionNodeCodec untuk serialisasi node yang efisien. Sebagai backend
penyimpanan persisten, Evice memanfaatkan ParityDB (sebuah implementasi
key-value store berbasis RocksDB yang dioptimalkan [2, 11]). Akses ke database
diabstraksi melalui ParityDbTrieBackend, yang mengelola penulisan pending
dan caching node dalam memori menggunakan LruCache untuk mempercepat
akses state. Modifikasi state melalui TrieSession memastikan atomisitas; per-
ubahan hanya di-commit ke ParityDB setelah blok berhasil dieksekusi.

3.1.1 Eksekusi Spekulatif dan State Sementara

Selain BlockTree yang mengelola struktur cabang, Evice juga memanfaatk-
an SpeculativeChain. Komponen ini bertanggung jawab untuk mengeksekusi
blok-blok yang diterima secara optimis, bahkan sebelum mereka tentu menjadi
bagian dari rantai kanonis atau difinalisasi. Ketika sebuah blok baru ditambahk-
an ke SpeculativeChain (setelah validasi awal), transisinya dieksekusi terhadap
state dari blok induknya (yang mungkin juga spekulatif). Hasil eksekusi (over-
lay perubahan state atau post-state root) disimpan dalam cache (LruCache).
Tujuannya adalah untuk menyediakan akses cepat ke state terbaru yang *ke-
mungkinan®* akan menjadi kanonis, misalnya untuk merespons query RPC yang
meminta informasi akun pada blok terbaru yang belum final. SpeculativeChain
menggunakan TrieSession untuk mengelola state sementara ini secara efisien



tanpa langsung menulis ke database utama. Ketika sebuah blok difinalisasi oleh
lapisan Gravity, SpeculativeChain akan memperbarui finalized head-nya dan
dapat memangkas cabang-cabang spekulatif yang tidak relevan lagi.

3.2 Runtime Smart Contract WASM

Evice mendukung smart contract yang dikompilasi ke WebAssembly (WASM)
[16], sebuah standar biner yang portabel, efisien, dan aman.

e Lingkungan Eksekusi: Kontrak dijalankan dalam sandbox menggunak-
an runtime Wasmer [17], yang memberikan isolasi kuat antara eksekusi
kontrak dan sistem host.

e Metering (Gas): Setiap instruksi WASM dan pemanggilan fungsi host
memiliki biaya gas yang telah ditentukan. Eksekusi akan berhenti jika gas
yang disediakan habis, mencegah loop tak terbatas dan serangan DoS.

e API Kontrak (Fungsi Host): Kontrak dapat berinteraksi dengan state
blockchain melalui serangkaian API aman yang diekspos oleh runtime,
termasuk:

read_storage & write_storage: Membaca dan menulis ke penyim-
panan persisten kontrak.

— get_caller: Mendapatkan alamat yang memanggil kontrak.
— get_block_timestamp: Mendapatkan timestamp blok saat ini.

— revert: Menghentikan eksekusi dan mengembalikan perubahan sta-
te.

— log: Menerbitkan event yang dapat diindeks oleh layanan eksternal.

— transfer_native_token: Meminta transfer token native dari saldo
kontrak.

3.3 Serialisasi Data Kontrak

Runtime WASM Evice memberikan fleksibilitas dalam format serialisasi data
yang digunakan oleh smart contract, baik untuk call data (input fungsi) maupun
untuk data yang disimpan dalam storage. SDK Kontrak (evice-contract-sdk)
secara default menggunakan borsh [9] untuk serialisasi state yang disimpan ka-
rena efisiensi dan kompatibilitasnya dengan lingkungan no_std. Namun, untuk
call data, kontrak dapat memilih format lain yang lebih sesuai dengan ekosistem
off-chain atau tooling yang ada. Sebagai contoh, implementasi kontrak ERC-
721 menggunakan serde_json [14] untuk mendefinisikan antarmuka pemang-
gilannya, sementara kontrak Fungible Token dan Bridge menggunakan borsh.
Pengembang disarankan untuk memilih format serialisasi call data yang paling
sesuai untuk kasus penggunaan mereka, sementara penggunaan borsh direko-
mendasikan untuk data state internal kontrak demi efisiensi on-chain.



3.4 Mekanisme Fee

Untuk mengatur penggunaan sumber daya jaringan dan memberikan insentif
kepada validator, Evice mengimplementasikan mekanisme fee yang mirip dengan
EIP-1559 [3]:

e base_fee_per_gas: Biaya dasar per unit gas yang disesuaikan secara
algoritmis di setiap blok berdasarkan kepadatan blok sebelumnya. Base
fee ini "dibakar" (dihapus dari peredaran).

e max_priority_fee_per_gas: "Tip" yang diberikan oleh pengguna kepa-
da proposer blok sebagai insentif untuk memprioritaskan transaksi mereka.

4 Protokol Konsensus: Aegis

Aegis adalah protokol konsensus hibrida yang dirancang untuk memberikan ke-
cepatan dan finalitas yang terinspirasi oleh HotStuff [19]). Terdiri dari dua
lapisan yang bekerja secara sinergis:

4.1 Lapisan Velocity (Konfirmasi Cepat)

Pemilihan sub-committee untuk setiap ronde konsensus dilakukan oleh fungsi
determine_sub_committee. Proses ini dimulai dengan mengambil daftar vali-
dator aktif saat ini dari state. Daftar ini kemudian diurutkan secara kanonis
(misalnya, berdasarkan alamat) untuk memastikan determinisme. Sebuah seed
acak-semu dihasilkan dengan menggabungkan hash dari highest_seen_qc (Qu-
orum Certificate tertinggi yang disepakati dari ronde sebelumnya) dengan nomor
ronde saat ini, lalu di-hash menggunakan SHA-256. Seed ini digunakan untuk
menginisialisasi Random Number Generator (RNG) yang kemudian digunakan
untuk mengacak (shuffle) urutan daftar validator yang sudah diurutkan. Sejum-
lah AEGIS_SUB_COMMITTEE_SIZE (nilai dari parameter genesis validator pertama
dari daftar yang telah diacak inilah yang membentuk sub-committee untuk ron-
de tersebut. Proposer kemudian berotasi di antara anggota sub-committee ini
berdasarkan nomor step dalam ronde. Jika proposer pada step n gagal meng-
usulkan blok dalam PROPOSER_TIMEOUT (sekitar 1200ms), konsensus akan maju
ke step n + 1 dan validator berikutnya dalam urutan sub-committee menjadi
proposer.

4.1.1 Manajemen Fork dengan BlockTree

Untuk menangani kemungkinan adanya fork atau cabang sementara selama la-
pisan Velocity sebelum finalitas dicapai oleh Gravity, Evice menggunakan struk-
tur data BlockTree. Struktur ini menyimpan semua blok valid yang diterima
node, bahkan jika blok tersebut bukan bagian dari rantai terpanjang saat ini.
Setiap blok direpresentasikan sebagai BlockNode, yang menyimpan data blok
itu sendiri, hash induknya, status pemrosesan state (BlockNodeStatus), dan
post-state root (jika state sudah berhasil dieksekusi).



BlockTree melacak dependensi antar blok; sebuah blok tidak dapat dip-
roses statenya hingga state induknya berstatus StateReady. Struktur ini ju-
ga menghitung weight (bobot) untuk setiap cabang berdasarkan jumlah suara
konsensus (VelocityVote) yang diterima oleh blok-blok di cabang tersebut.
Fungsi find_head digunakan untuk menentukan ujung rantai (head) kanonis
berdasarkan cabang dengan bobot tertinggi yang state-nya sudah siap. Ketika
lapisan Gravity memfinalisasi sebuah blok, BlockTree akan melakukan pruning
dengan menghapus semua node yang tidak lagi merupakan leluhur atau turunan
dari blok yang difinalisasi, memastikan efisiensi memori.

4.1.2 Pemrosesan State Asinkron

Untuk meningkatkan throughput dan responsivitas node, eksekusi state yang
intensif komputasi (terutama validasi transaksi dan eksekusi smart contract
WASM) dilakukan secara asinkron. Ketika BlockTree menerima blok baru yang
induknya sudah StateReady, ia tidak langsung memproses state blok baru ter-
sebut di thread utama konsensus. Sebaliknya, ia men-spawn sebuah background
task baru (menggunakan tokio: :spawn atau tokio: :task::spawn_blocking)
[15].

Task ini bertanggung jawab untuk memanggil fungsi apply_transactions_-
to_session yang melakukan validasi transaksi mendalam, eksekusi WASM, dan
perhitungan state root baru dalam TrieSession terpisah. Hasilnya (sukses de-
ngan post-state root baru, atau gagal dengan error) kemudian dikirim kembali
ke thread utama melalui channel mpsc sebagai BlockProcessingResult. Thre-
ad utama kemudian memperbarui status BlockNode yang sesuai di BlockTree.
Pendekatan asinkron ini memungkinkan mesin konsensus untuk terus menerima
dan memvalidasi proposal atau suara baru sementara state blok sebelumnya
masih diproses di latar belakang.

4.2 Lapisan Gravity (Finalitas Absolut)

Lapisan ini memberikan finalitas deterministik (tidak dapat diubah) secara per-
iodik.

e Epoch dan Checkpoint: Waktu dibagi menjadi epoch (misalnya, setiap
10 blok). Blok terakhir di setiap epoch dianggap sebagai checkpoint.

e Manajemen Kunci BLS: Setiap validator aktif diwajibkan memiliki
pasangan kunci BLS (Boneh-Lynn—Shacham) [1] individual. Kunci-kunci
ini umumnya dihasilkan secara offline oleh validator sebelum bergabung ke
jaringan (misalnya, menggunakan perkakas bantu seperti validator-tool).
Kunci publik BLS milik validator kemudian didaftarkan dan disimpan da-
lam state on-chain yang terkait dengan akun validator tersebut, sedangk-
an kunci privat BLS disimpan secara aman oleh masing-masing validator
dan digunakan untuk operasional node. Mekanisme DKG (Distributed
Key Generation) secara dinamis belum diaktifkan dalam implementasi sa-
at ini.



e Voting Finalitas: Setelah sebuah checkpoint diusulkan dan diproses, se-

mua validator aktif menandatangani hash dari checkpoint tersebut meng-
gunakan kunci privat BLS individual mereka. Tanda tangan parsial ini
disebut sebagai FinalityVote.

Finality Certificate: Kumpulan FinalityVote (tanda tangan BLS in-
dividual) dari para validator dikumpulkan. Apabila jumlah suara yang
valid dari validator unik telah mencapai ambang batas kuorum (lebih dari
2/3 validator aktif), tanda tangan-tanda tangan individual tersebut dia-
gregasi secara kriptografis menjadi satu tanda tangan BLS agregat yang
ringkas. Tanda tangan agregat ini, beserta hash checkpoint dan daftar va-
lidator pemberi suara, membentuk FinalityCertificate. Sertifikat ini
menyajikan bukti matematis yang efisien dan tidak dapat disangkal bah-
wa mayoritas validator telah menyetujui checkpoint, sehingga memberikan
finalitas absolut pada checkpoint tersebut dan seluruh blok dalam seja-
rahnya. Verifikasi sertifikat dapat dilakukan oleh node manapun dengan
menggunakan kunci publik BLS individual para validator yang tersimpan
dalam state.

4.3 Mekanisme Slashing

Untuk menjaga keamanan jaringan, validator yang berperilaku jahat atau lalai
akan dihukum melalui pemotongan stake (slashing).

5

e Double Signing: Jika seorang validator menandatangani dua blok ber-

beda pada ketinggian dan ronde yang sama, siapa pun dapat mengirimkan
bukti melalui transaksi ReportDoubleSigning. Pelanggaran ini mengaki-
batkan pemotongan stake sebesar 10%.

Invalid State Transition: Jika seorang validator mengusulkan blok de-
ngan transisi state yang salah (misalnya, state root yang tidak valid), bukti
dapat diajukan untuk menghukum mereka. Pelanggaran ini mengakibatk-
an pemotongan stake sebesar 50%.

Inactivity: Validator yang sering offline dan gagal berpartisipasi dalam
konsensus selama periode waktu tertentu (INACTIVITY_THRESHOLD_BLOCKS,
saat ini 1000 blok). akan dikenai penalti ringan sebesar 1% dan akhirnya
dikeluarkan dari set validator aktif (jailed).

Layer 2: ZK-Rollup

Untuk mencapai skalabilitas ekstrem, Evice mengintegrasikan ZK-Rollup seba-
gai solusi Layer 2.



5.1 Arsitektur

e Sequencer: Entitas yang dipilih di L1 untuk setiap slot batch L2 meng-
gunakan mekanisme Stake-Weighted VRF. Algoritma pemilihan (Stake-
WeightedVrfSelector) menghitung nilai acak semu untuk setiap sequ-
encer kandidat (validator yang terdaftar sebagai sequencer) berdasark-
an selection material (hash blok L1 sebelumnya) dan alamat kandidat.
Nilai ini kemudian dibagi dengan jumlah stake kandidat. Kandidat de-
ngan nilai terendah terpilih. Sequencer terpilih menjalankan node terpi-
sah (sequencer.rs) yang menerima transaksi L2 melalui API JSON-RPC,
mengurutkannya (berdasarkan priority fee), membuat batch, menghasilk-
an bukti VRF kepemimpinannya, memanggil subprocess prover untuk
menghasilkan bukti ZK, mengumpulkan tanda tangan dari Data Availa-
bility Commiittee (DAC), dan mengirimkan transaksi SubmitRollupBatch
ke L1.

e Prover & Aggregator: Setelah batch dibuat, Prover menghasilkan bukti
ZK-SNARK untuk batch tersebut. Aggregator dapat mengambil beberapa
bukti dari batch yang berurutan dan menggabungkannya menjadi satu
bukti tunggal, yang jauh lebih murah untuk diverifikasi di L1.

5.2 Sirkuit Zero-Knowledge

e Sirkuit Batch (Groth16/BLS12-377): Sirkuit utama (BatchSystem-
Circuit) memodelkan transisi state dari sebuah Merkle Tree berbasis hash
Poseidon [5]. Sirkuit ini memvalidasi bahwa setiap transaksi dalam batch
adalah valid (misalnya, pengirim memiliki saldo yang cukup) dan bahwa
final state root adalah hasil yang benar dari penerapan semua transaksi
pada initial state root.

e Sirkuit Agregasi (Groth16/BW6-761): Untuk efisiensi lebih lanjut,
AggregationCircuit (12 aggregation.rs) memverifikasi dua bukti L2 ba-
tch (12_ circuit.rs) di dalam sirkuit ZK lain (Groth16/BW6-761). Sirkuit
ini memastikan kedua bukti valid dan state root akhir dari bukti pertama
cocok dengan state root awal dari bukti kedua. Outputnya adalah satu
bukti agregat yang lebih ringkas. Implementasi saat ini (aggregator.rs,
sequencer.rs) mendukung agregasi satu tingkat (dua bukti menjadi satu).

5.3 Data Availability (DA)

Untuk memastikan bahwa siapa pun dapat merekonstruksi state L2 jika Sequen-
cer berhenti bekerja, data transaksi harus tersedia. Evice menggunakan model
Data Availability Committee (DAC) di mana sekelompok pihak tepercaya me-
nandatangani hash data batch, membuktikan bahwa mereka telah menerima dan
akan menyimpan data tersebut. Tanda tangan ini disertakan dalam transaksi
L1.



5.4

Mekanisme Fee Layer 2

Meskipun whitepaper ini fokus pada mekanisme fee L1 yang mirip EIP-1559,
lapisan L2 juga memiliki mekanisme fee internal yang dikelola oleh Sequencer.
Pengguna yang mengirimkan transaksi L2 menentukan max_fee_per_gas dan
max_priority_fee_per_gas. Sequencer menggunakan max_priority_fee_-
per_gas (tip prioritas) sebagai kriteria utama untuk mengurutkan transaksi
yvang akan dimasukkan ke dalam batch berikutnya. Transaksi dengan tip lebih
tinggi akan diprioritaskan.

6 Kriptografi

Evice menggunakan tumpukan kriptografi modern dan beragam untuk menga-
mankan berbagai aspek protokol:

Tanda Tangan (L1): Dilithium [8], salah satu algoritma yang distanda-
risasi oleh NIST untuk kriptografi post-quantum, digunakan untuk tanda
tangan transaksi dan blok. Ini memberikan ketahanan terhadap serangan
dari komputer kuantum di masa depan.

Agregasi Tanda Tangan (Finalitas): BLS (Boneh-Lynn—Shacham)
[1] digunakan untuk FinalityCertificate karena kemampuannya meng-
agregasi banyak tanda tangan menjadi satu tanda tangan tunggal yang
ringkas.

Keacakan (Pemilihan Sequencer): Schnorrkel VRF (Verifiable Ran-
dom Function) [4] digunakan untuk pemilihan pemimpin sequencer yang
tidak dapat diprediksi namun dapat diverifikasi.

Hashing:

— Keccak-256 [7]: Untuk alamat dan struktur Merkle Patricia Trie L1.
— SHA-256: Untuk hashing blok, transaksi, dan data internal.

— Poseidon [5]: Fungsi hash yang dioptimalkan untuk ZK-SNARK, di-
gunakan dalam Merkle Tree L2 dan sirkuit ZK.

Zero-Knowledge Proofs: Groth16 [6], skema ZK-SNARK yang efisi-
en, dipilih karena menghasilkan bukti yang sangat ringkas dan verifikasi
on-chain (L1) yang cepat. Skema ini digunakan untuk bukti L2 dan agre-
gasi[cite: 117].

Enkripsi: Scrypt (KDF) [12] dan XChaCha20Poly1305 (AEAD) [10] di-
gunakan untuk mengamankan file keystore[cite: 118]. Scrypt berfungsi
sebagai KDF yang intensif memori untuk melindungi kata sandi dari se-
rangan brute-force, sementara XChaCha20Poly1305 menyediakan enkripsi
terotentikasi atas data kunci privat itu sendiri.



7 Jaringan P2P

Komunikasi antar node diatur oleh 1ibp2p [13], sebuah framework jaringan
modular yang menyediakan:

e Discovery: Kademlia DHT dan protokol Identify untuk menemukan dan
mengidentifikasi peer lain.

e Transport: TCP dan QUIC.
¢ Propagasi Pesan:

— Gossipsub: Untuk menyebarkan transaksi dan pesan konsensus seca-
ra efisien ke seluruh jaringan.

— Request-Response: Untuk permintaan data spesifik seperti blok, he-
ader, atau sinkronisasi state.

e Manajemen Reputasi: Node melacak perilaku peer dan akan membe-
rikan penalti atau memutus koneksi peer yang berperilaku buruk.

Selain itu, node menggunakan AddressBook yang dipelihara secara lokal un-
tuk memetakan alamat validator on-chain ke identitas jaringan (PeerId dan
Multiaddr) mereka. Informasi ini diperbarui dari state chain terbaru dan di-
gunakan untuk komunikasi langsung, misalnya, mengirim vote ke proposer atau
pesan DKG. Node juga dapat bertukar daftar peer yang diketahui melalui pro-
tokol Request-Response untuk mempercepat penemuan.

8 Governance

Evice memiliki kerangka kerja governance on-chain yang memungkinkan pe-
megang token (melalui stake) untuk mengusulkan dan memberikan suara pada
perubahan protokol.

e Proposal: Validator dapat mengajukan proposal menggunakan transaksi
SubmitProposal. Struktur proposal saat ini mendukung beberapa jenis
tindakan (ProposalAction), termasuk proposal teks, perubahan parame-
ter jaringan (UpdateParameter), dan usulan upgrade runtime (UpgradeRu-
ntime).

e Voting: Suara dihitung berdasarkan jumlah stake yang dimiliki oleh vali-
dator yang memberikan suara melalui transaksi CastVote. Setelah periode
voting berakhir, protokol akan secara otomatis menghitung hasilnya. Pro-
posal yang mencapai kuorum dan mayoritas "ya" akan ditandai sebagai
disetujui, meskipun logika untuk eksekusi otomatis dari tindakan propo-
sal tersebut (seperti mengubah parameter state) merupakan bagian dari
pengembangan di masa depan.

10



9 Tokenomics

Ekonomi token Evice dirancang untuk menyelaraskan insentif semua peserta
jaringan.

e Staking: Validator harus men-stake token untuk berpartisipasi dalam
konsensus, mengamankan jaringan, dan mendapatkan imbalan.

e Rewards: Imbalan blok didistribusikan kepada proposer blok. Imbalan
ini bersifat dinamis, disesuaikan berdasarkan total jumlah token yang di-
stake di jaringan. Proposer juga menerima priority fees dari transaksi
yang mereka sertakan.

e Fee Burning: Base fee dari setiap transaksi dibakar, menciptakan tekan-
an deflasi pada pasokan token seiring dengan meningkatnya penggunaan
jaringan.

e Slashing: Validator yang melanggar aturan akan kehilangan sebagian
dari stake mereka. Dana yang disita sepenuhnya akan dibakar.

10 Tools dan Ekosistem

Untuk mendukung pengembangan dan operasi jaringan, Evice menyediakan se-
rangkaian tool yang komprehensif, termasuk:

e Klien Node: Implementasi node penuh evice_blockchain yang menja-
lankan semua komponen L1, termasuk P2P, konsensus, dan RPC.

e Layanan Inti L2:

— Sequencer: Binary sequencer yang menjalankan node L2, meneri-
ma transaksi melalui APT JSON-RPC, membuat batch, dan berkoo-
rdinasi dengan prover.

e Utilitas CLI Pengguna & Validator:

— create_tx: Alat utama untuk membuat dan mengirim berbagai jenis
transaksi L1 dan L2.

— create_keystore: Untuk membuat file keystore baru yang dienkri-
psi dengan aman.

— validator_tool: Membantu calon validator menghasilkan aset pen-
daftaran dan kunci-kunci yang diperlukan.

e Utilitas CLI Zero-Knowledge:

— generate_zk_params: Alat sekali pakai untuk melakukan trusted se-
tup dan menghasilkan proving key serta verifying key untuk sirkuit
ZK-Rollup L2.

11



— create_poseidon_params: Alat sekali pakai untuk menghasilkan pa-
rameter untuk fungsi hash Poseidon yang digunakan di dalam sirkuit
ZK.

— prover: Binary yang dipanggil oleh Sequencer untuk mengambil data
batch transaksi dan menghasilkan bukti ZK-SNARK.

— aggregator: Mengambil beberapa bukti ZK dari prover dan meng-
gabungkannya menjadi satu bukti agregat tunggal yang lebih efisien.

11 Kesimpulan

Evice Blockchain menghadirkan arsitektur canggih yang secara fundamental di-
rancang untuk mengatasi trilema blockchain. Dengan menggabungkan keaman-
an lapisan dasar yang diperkuat kriptografi post-quantum (Dilithium), finalitas
absolut yang cepat melalui konsensus hibrida Aegis, dan skalabilitas masif dari
ZK-Rollup yang terintegrasi, Evice siap menjadi platform pilihan untuk aplika-
si terdesentralisasi yang menuntut kinerja tinggi, biaya rendah, dan keamanan
tanpa kompromi.

Arsitektur modularnya, yang memisahkan eksekusi, konsensus, dan keterse-
diaan data, memberikan fondasi yang kokoh dan fleksibel. Penggunaan runtime
WASM yang aman memungkinkan pengembangan smart contract yang kom-
pleks dan efisien, sementara mekanisme ekonomi token yang seimbang dengan
fee burning EIP-1559 dirancang untuk keberlanjutan jangka panjang. Kami
percaya bahwa pendekatan berlapis, pemilihan teknologi yang berorientasi ke
masa depan, dan ekosistem perkakas yang lengkap ini akan membuka jalan bagi
gelombang inovasi berikutnya di ruang web3.

12



Pustaka

[1] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing, 2001.

[2] Dhruba Borthakur, Siying Dong, Jason Kunnath, Murali Mullane, Mark
Callaghan, and Nathan Bronson. RocksDB: A persistent key-value store
for flash and ram storage. In 12th USENIX Conference on File and Storage
Technologies (FAST ’14), 2014.

[3] Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden,
and Abdelhamid Bakhta. EIP-1559: Fee market change. https://eips.
ethereum.org/EIPS/eip-1559, 2019. [Online; diakses 21 Oktober 2025].

[4] Fatema David and Ian Goldberg. Schnorrkel: Schnorr signatures and vrfs
on ristretto. Cryptology ePrint Archive, Report 2019/006, 2019. https:
//eprint.iacr.org/2019/006, [Online; diakses 21 Oktober 2025].

[5] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. POSEIDON: A new hash function for zero-
knowledge proof systems. In 30th USENIX Security Symposium, 2021.

[6] Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology — EUROCRYPT 2016, pages 305-326. Springer
Berlin Heidelberg, 2016.

[7] National Institute of Standards and Technology. FIPS 202: SHA-3 stan-
dard: Permutation-based hash and extendable-output functions. Technical
report, U.S. Department of Commerce, 2015. [Online; diakses 21 Oktober
2025].

[8] National Institute of Standards and Technology. FIPS 204 (Draft): Module-
lattice-based digital signature standard (ml-dsa). Technical report, U.S.
Department of Commerce, 2023. [Online; diakses 21 Oktober 2025].

[9] NEAR Protocol. Borsh serialization format. https://borsh.io/, 2024.
[Online; diakses 21 Oktober 2025].

[10] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols.
Request for Comments RFC 8439, Internet Engineering Task Force (IETF),
June 2018. [Online; diakses 21 Oktober 2025].

[11] Parity Technologies. Parity db. https://github.com/paritytech/
parity-db, 2023. [Ounline; diakses 21 Oktober 2025].

[12] Colin Percival and Simon Josefsson. The scrypt Password-Based Key De-
rivation Function. Request for Comments RFC 7914, Internet Engineering
Task Force (IETF), May 2016. [Ounline; diakses 21 Oktober 2025|.

[13] Protocol Labs. libp2p: The p2p networking stack. https://libp2p.io/,
2025. [Online; diakses 21 Oktober 2025].

13



[14] Serde Developers. Serde: A framework for serializing and deserializing
rust data structures efficiently and generically. https://serde.rs/, 2025.
[Online; diakses 21 Oktober 2025].

[15] Tokio Contributors. Tokio: An asynchronous runtime for the rust program-
ming language. https://tokio.rs/, 2025. [Online; diakses 21 Oktober
2025

[16] W3C WebAssembly Working Group. Webassembly core specification v2.0.
https://webassembly.github.io/spec/core/, 2022. [Online; diakses 21
Oktober 2025].

[17] Wasmer Inc. Wasmer: The universal webassembly runtime. https://
wasmer.io/, 2025. [Online; diakses 21 Oktober 2025].

[18] Gavin Wood. ETHEREUM: A secure decentralised generalised transaction
ledger. Technical report, Ethereum Project, 2014. Gawain’s Version, Berlin,
[Online; diakses 21 Oktober 2025].

[19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. HotStuff: BFT consensus in the lens of blockchain, 2019.

14



